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Abstract: Kinetic models can be used to characterize the flotation process. In this paper, three primary 

parameters, namely, distribution of flotation rate constant f(K), order of flotation process n and ultimate 

recovery R∞ are presented to perform analysis of flotation kinetics. The flotation rate constant f(K) is a 

function of both the size and hydrophobicity of particles. Though the more commonly used distributions 

are Delta function as well as Rectangular, Kelsall and Gamma models, there is no agreement in the 

literature as to which distribution function better characterize the floatability distribution. The first-order 

models can be used to describe most mineral flotation processes, while there is also evidence that the non-

integral-order equation is capable of representing the kinetic characteristics of the batch flotation process. 

The order is lower than 1 in the initial moments of the flotation process. The solution of ultimate recovery 

calculated by the least squares method is greater than 100% (R∞ >100%). An empirical model was 

proposed to avoid the improper phenomenon in the solution of ultimate recovery, which can improve the 

availability and validity of kinetic models. Finally, more attention should be paid to the overfitting 

resulting from the increase in the number of parameters in the statistical analysis of kinetic models. 

Keywords: kinetic mode, kinetic order, rate constant distribution, ultimate recovery, overfitting 

Introduction 

Froth flotation is a process of separation and concentration based on differences in the 

physicochemical properties of interfaces (Allan and Woodcock, 2001). The 

technology has been used industrially in treatment of wastewater, bacteria, coal, clays, 

corn, resins, proteins, fats, rubber, dyes, glass, plastics, fruit juices, cane sugar, etc. 

(Matis and Zouboulis, 1995). Froth flotation is a selective separation process, which is 

affected by many factors related to the floated mineral such as grade, degree of 

liberation, surface properties and many operating variables etc. (Cilek, 2004). 

http://www.minproc.pwr.wroc.pl/journal/
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Flotation is a complex process which involves the interactions of three phases (gas, 

liquid and solid). Hence, the construction of mathematical models of flotation is 

proved to be very difficult. A flotation compartment can be defined as the pulp and 

froth. The transfer of any valuable or gangue components between pulp and froth 

zones is shown in Fig. 1. Irrespective of the transportation mechanism for reaching the 

froth region, particles can return to the pulp region or eventually leave the froth region 

into the concentrate launder if levels of manipulated variables allow froth removal.  

Traditionally, evaluation of batch flotation tests is based largely on a rougher 

recovery value achieved at a defined time. Since the cumulative recovery of a 

component in the concentrate is proportional to flotation time, the flotation process 

can be considered as a time-rate recovery process. Therefore, a mathematical flotation 

model that incorporates both the recovery and rate function can completely describe 

flotation time-recovery profiles. 

Subsequently, a large number of models have been proposed for a better 

understanding of the flotation process. Dowling et al. (1985) reviewed 13 different 

models of flotation process and attempted to differentiate among them based on 

several sets of data on time-recovery profiles of a porphyry copper ore. Lynch et al. 

(1981) defined three categories for these models (empirical models, probability 

models, and kinetic models). Empirical models are too specific to their environment 

and usually involve a trial and error feedback approach to optimization. More 

importantly, the model parameters obtained by statistical techniques do not have any 

physical significance and do not provide any insight into flotation process. The 

empirical models offer little predictive capacity beyond the conditions used in their 

evaluation (Nguyen and Schulze, 2004). The probability models basically consider the 

probabilities of particle-bubble collision, adhesion, froth stability, etc. The simple 

form of the probability approach is similar to the simplest form of kinetic models 

(Yuan et al., 1996; Sripriya et al., 2003). Consequently, this paper will consider only 

kinetic models.  

 

Fig. 1. Transfer of materials between pulp  

and froth zones (based on Lynch et al., 1981) 
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Kinetic models are established on the basis of the analogy between a chemical 

reaction (collision of molecules) and an important flotation mechanism, i.e., the 

collision between either hydrophilic or hydrophobic particles and air bubbles in the 

pulp volume. It is generally agreed that the first paper with flotation kinetics was 

published by Zuniga (1935) in Chile. He had applied the differential equation of 

chemical reaction kinetics to portray the flotation process and observed that the 

flotation recovery is an exponential function of flotation time. The differential 

equation of Zuniga (1935) can be written as: 

 
dC

KC
dt

    (1) 

where C(t) is the concentration of floating particles remaining in the flotation chamber 

up to the flotation time t, K is the flotation rate constant.  

In fact, Arbiter (1951) proposed a second-order equation to represent the results of 

Zuniga (1935), Beloglazov (1939) and Sutherland (1948), as well as his own results 

obtained in laboratory batch tests and other data produced by industrial cells. The 

original equation proposed by Arbiter (1951) is: 

 2dC
KC

dt
  .  (2) 

Equations 1 and 2 can be generalized as: 

 ndC
KC

dt
    (3) 

 

in which parameter n characterizes the order of the process (order of flotation 

kinetics).  

The recovery of particles in the froth product (R) after flotation time (t) is defined 

as: 

 0

0 0

( ) ( )
( ) =1

C C t C t
R t

C C


    (4) 

where C0 is the concentration of floating particles remaining in the flotation chamber 

with the initial condition (t = 0). Generally, it is considered that the value of C0 is 

equal to 1. In other words, there is no froth product at the initial flotation time (t = 0). 

All particles will undergo flotation, i.e., the recovery can be 100% because 

theoretically always more particles float that falls back when the flotation process is 

infinite under ideal conditions. Therefore, some larger and more difficult-to-float 

particles may still remain unfloated in the general case because, despite the adhesion 
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process to bubble, a reverse process occurs, i.e. detachment of the particles from the 

surface of bubbles into the pulp (Morris, 1952; Mika and Fuerstenau, 1968; 

Stachurski, 1970; Woodburn et al., 1971; Schulze, 1977; Schulze, 1992). According to 

Eq. 4, under the condition (t→∞) the ultimate recovery R∞ can be expressed as: 

 1R C     (5) 

Inserting Eqs. 4 and 5 into Eq. 3, gives: 

  
ndR

K R R
dt

  .  (6) 

It is clear that both the bubble surface area flux and collection efficiency are 

strongly dependent on the particle and bubble sizes so that unless size ranges of 

bubbles and particles are extremely narrow, the rate constant K will be some sort of 

effective constant, which is appropriate only to the particular size distribution under 

the test with given conditions (Nguyen and Schulze, 2004; Polat and Chander, 2000). 

The distribution of the rate constant, f(K), was introduced to represent the distribution 

function of K for different particles in the flotation cell, and thus Eq. 6 can be equal to:  

   
ndR

f K R R
dt

  .  (7) 

The ultimate recovery R∞, distribution of flotation rate constant f(K) and order of 

flotation kinetics n in Eqs. 6 and 7 can be determined from the experimental data of R 

versus t. 

In the present article, it is sought to review kinetic models based on these three 

parameters, for instance, f(K) n and R∞, with a focus on the description of the 

flotation process and the reliable kinetic analysis procedure. 

Distribution of K 

The conception of distribution of the rate constant is introduced to extend the validity 

and applicability of kinetic models for the heterogeneity of particles. Various 

distributions have been proposed by different investigators to account for the 

variability of the rate constant. These distributions can be divided into three groups: 

discrete, continuous mean distributions of rate constants. 

Discrete rate constants 

There are several kinetic models involved with the discrete rate constant. The 

differences between them are the number of fractions assumed (Morris, 1952; Kelsall, 

1961; Imaizumi, 1963; Kelsall and Stewart, 1971; Jowett, 1974; Cutrris, 1977).  
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A single phase discretely distributed species models is supposed to follow the well-

known classical first-order and second-order kinetic model. The classical first-order 

flotation model is most widely used to optimize the design of flotation circuits (Agar, 

1980; Xu, 1998). This is the standard classical first-order model and it was proposed 

by many investigators (Dowling et al., 1985; Wills, 1988; Vanangamudi et al., 1989; 

Radoev et al., 1990; Mazumdar, 1994; Gülsoy and Ersayin, 1996; Sripriya et al., 

2003). The equation of the classical first-order models can be obtained by the 

integration of Eq. 6 when n = 1: 

 (1 )BK t
R R e



    (8) 

where KB is the average flotation rate constant. Equation 8 is the simplest model with 

one average flotation rate constant for all particles and under the whole flotation 

conditions.  

In fact, the classical first-order equation is also named as the first-order with Dirac 

delta function (Lynch et al., 1981). The KB can be predicted using the fundamental 

model which takes into account superficial gas velocity, bubble size, collision 

efficiency and attachment efficiency (Jameson et al., 1977; Ralston, 1992):  

 
3

2

fr

B c a

b cell

G h
K E E

d V
   (9) 

where h is the height of the flotation cell, Gfr is the gas flow rate, db is the diameter of 

the bubble, Vcell is the volume of the flotation cell. Ec and Ea are the efficiencies of the 

bubble-particle collision, attachment, and stability in the pulp zone. The efficiencies 

are affected by particle density, pulp viscosity, induction time, particle size, shape, and 

composition, gas hold-up, bubble size, turbulence, bubble viscosity, particle velocity, 

etc. (Danoucaras et al., 2013).  

In addition to the classical first-order model, the single phase discretely distributed 

species model is also applied to the second-order flotation kinetics by Arbiter (1951). 

The two-fraction incorporates two rate terms instead of the rate constant (Kelsall, 

1961). The mathematical form of this model can be given as:  

     1 1 1f s
K t K t

R e e 
 

      (10) 

where  is the fraction of flotation components with the slow rate constant, Kf and Ks 

are the rate constants for fast and slow components, respectively. This model does not 

include an ultimate recovery parameter but rather the ultimate recovery is assumed to 

be 100%. As Ks→0, the term (1 − e
−Kst) in Eq. 10 approaches 0. Thus, the slow-

floating component cannot be recovered from the pulp and the term (1 – ) becomes 

analogous to ultimate recovery. 
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The Kelsall model has been used to model the flotation kinetics by many 

researchers (Harris and Khandrika, 1985; Mehrotra and Padmanabhan, 1990; Apling 

and Ersayin, 1986; Albijanic et al., 2015). 

The modified version of the Kelsall model adds the influence of ultimate recovery 

to the Kelsall model and brings the number of parameters to four (Jowett, 1974): 

     1 1 1f s
K t K t

R R e e 
 


     
  .

 (11) 

The modified Kelsall model which includes six parameters also provided the best 

fit to the flotation kinetic of iron ore (Saleh, 2010), galena of Rosh Pinah ore (Coetzer 

et al., 2003), waste coal (Sokolovic et al., 2012) and copper slag (Stanojlovic and 

Sokolovic, 2014). 

The three-fraction kinetic model discretizes the floating material into fast, medium 

and slow floating components (Jowett, 1974; Apling and Ersayin, 1986).The model 

with the ultimate recovery is: 

      1 1 + 1f m s
K t K t K t

f m sR R e e e  
  


     
 

 (12) 

 1f m s       (13) 

where Km is the flotation rate of medium floating fraction and f, m and s are the 

fractions of flotation components with a fast, medium and slow rate constant, 

respectively. 

Then, the first-order kinetic model gives by dividing the particle mixture into more 

floatability fractions (Huber-Panu et al., 1976): 

  
1

1 i

i

m
K t

i

R R e 





    (14) 

 
1

=1
i

m

i




   (15) 

where subscript i describes the floatability fraction for each respective rate constant, m 

is the number of classified fractions and γi represents the proportion of fraction i. 

Furthermore, flotation models with multi-distributed rate constant, where each 

mineral is not only broken up into different size fractions but these size fractions are 

also broken into floatability components, are either arbitrary as above or based on 

liberation or surface reagent coverage (King, 1976; Niemi et al., 1997).  

It can be concluded that the multi-fraction models such as two-fraction and three 

fraction models show a better correlation than those models having two parameters. A 

relatively unsophisticated account for that is probably because the two models have 
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more parameters, while the other models only have two or three parameters (Albijanic 

et al., 2015). However, this interpretation cannot illustrate that those models based on 

the classical first-order model with two parameters also show a good fit to the 

experimental data (Agar, 1980; Agar et al., 1998; Xu, 1998; Ahmed, 2004; Mazumdar, 

1994; Ucurum, 2009). Hence, there is a need for more investigations to portray the 

effect of increase parameters in the model and to determine their upper to provide an 

adequate model (Apling and Ersayin, 1986).  

Besides, the population balance models are a special type of discrete kinetic 

models, where the principles based on the probability of certain flotation subprocesses 

occurrence are often used (Herbst and Harris, 2007; Jovanovic and Miljanovic, 2015). 

The population balance approach in the flotation process macro-scale modeling was 

also applied by Bloom and Heindel (1997), Sosa-Blanco et al. (1999); Casali et al. 

(2002) and Sbarbaro et al. (2008). 

Continuous rate constant distribution 

Imaizumi and Inoue (1963) introduced a new idea on flotation kinetics, stating that the 

first-order equation, generally written as Eq. 8 should be:  

 
0

1 ( )

K

KtR R f K e dK



 
  

 
   (16) 

where K is the upper limit of the rate constant and f(K) is the continuous distribution 

of the rate constant or K spectrum, which is normalized similarly to Eq. 17: 

0

( ) =1

K

f K dK .  (17) 

From the combined early work, various continuous distribution functions were 

proposed to account for the variability in the K’s, including gamma (Imaizumi and 

Inoue, 1963; Loveday, 1966), bimodal-gamma (Harris and Chakravarti, 1970), 

triangular (Harris and Chakravarti, 1970), rectangular (Huber-Panu et al., 1976; 

Klimpel, 1980), sinusoidal (Diao et al., 1992), exponential (Imaizumi and Inoue, 

1963) and normal (Chander and Polat, 1994). Some first-order models and their 

continuous distribution functions are summarized in Table 1. Besides, the rectangular 

distribution was also used in second-order flotation kinetics by Klimpel (1980). 

In fact, there is disagreement in the literature as to which continuous distribution 

function is better suited to characterize, especially for a wide range of flotation 

conditions, as no single model is sufficient to represent the flotation rate data and the 

best model may be different under various flotation conditions (Jowett, 1974; Harris 

and Cuadros-Paz, 1978; Fuerstenau et al., 1988; Vanangamudi and Rao, 1986; 

Dowling et al., 1985; Polat and Chander, 2000; Yianatos et al., 2010. Jovanovic and 

Miljanovic, 2015). 
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Mean rate flotation model 

The mean rate flotation model, namely, Chen’s model is generally based on the 

assumption that the rate of reduction in the flotation mean rate is proportional to 

flotation mean rate (Chen and Wu, 1978; Chen and Mular, 1982): 

 
dK

gK
dt

  .  (18) 

The mathematical expression of Chen’s model is: 

 ( )
dC

K t C
dt

    (19) 

 ( )= gt

QK t K e   (20) 

where KQ is the mean rate value at the beginning of flotation and g is a parameter. This 

alternative approach in fitting experimental data was also proved by Xu (1984) and Yi 

(1986). 

In selecting suitable rate distributions (discrete, continuous and mean), 

distributions with a minimum number of parameters, which also have physical 

significance, should be considered primarily. As the number of parameters in a model 

is increased to the maximum possible (dependent on the number of experimental 

points), a better fit of the model to the experimental data is expected (Lynch et al., 

1981). However, it is expected that overfitting generally occurs when a model is 

excessively complex, such as having too many parameters relative to the number of 

observations. As the number of parameters increases, significant overfitting and 

increasingly poor generalization are evident (Lawrence et al., 1997.). A overfitted 

model will generally have poor predictive performance as it can exaggerate minor 

fluctuations in the data. Hence, it is necessary that more effort should be placed on the 

overfitting of the kinetic modelling in the flotation process. 

Nevertheless, in spite of many attempts to determine the rate constant K as accurate 

as possible, and consequently to define the most appropriate flotation process model 

as possible, the widely accepted conclusion is that there is no single model that is 

suitable to describe the characteristics of flotation kinetics well enough under various 

flotation conditions. 

Order of flotation kinetics 

The actual order of flotation kinetics has been investigated by many researchers 

(Volkova, 1946; Arbiter, 1951; Bogdanov et al., 1954; Horst and Morris, 1956; 

Klassen and Mocrousov, 1963; Tomlinson and Fleming, 1965; Somasundaran and 

Lin, 1973; Hernainz and Calero, 1996, 2001; Brozek and Młynarczykowska, 2007; 
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Bakalarz and Drzymala, 2013; Gharai and Venugopal, 2016; Bu et al., 2016). The 

interpretations of the order of flotation kinetics can be divided into three categories 

including first-order, second-order and non-integral-order equations. 

First-order flotation kinetics (n = 1) 

The first-order flotation kinetics introduced by Zuniga (1935) and Schuhmann (1942) 

is the most widely accepted approach ((Imauzimi and Inoue, 1963; Tomlinson and 

Fleming, 1965; Harris and Chakravarti, 1970; Jameson et al., 1977; Dowling et al., 

1985; Polat and Chander, 2000; Sripriya et al., 2003; Natarajan and Nirdosh, 2006; 

Oproiu et al., 2009; Yianatos et al., 2010; Li et al., 2013; Luo et al., 2015; Ni et al., 

2016). Many models of first-order kinetics have been developed on the assumptions 

that the rate of the particle-bubble collision is first-order with respect to the number of 

particles and that the bubble concentration remains constant (Sutherland, 1948). 

Model 1: classical first-order model 

The classical first-order model was discussed and presented by Eq. 8. It describes 

flotation of a monodispersed feed containing particles with an average rate constant 

(KB), i.e., floatabilities of particles are constant. There is an interesting phenomenon 

that the ultimate recovery calculated by this model is smaller than the maximum 

recovery obtained in the flotation test (Mazumdar, M., 1994; Bu et al., 2016). 

Table 1. Summary of distribution functions of K 

Name Form of distribution f(K) R(t) (first-order) 
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Table 1 Summary of distribution functions of K (cont.) 

Name Form of distribution f(K) R(t) (first-order) 
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Note: parameters a, b, c, d and λ are the kinetic constants of first-order models with gamma, bimodal-

gamma, triangular, rectangular, sinusoidal and normal distributions, respectively; parameter p is the 

exponential number of the first-order model with gamma distribution; σ and μ represent the mean rate 

constant of the normal distribution and standard deviation or the width of the distribution, respectively; γ1 

and γ2 are the fractions of the component with distribution of gamma 1 and 2, respectively. 



X. Bu, G. Xie, Y. Peng, L. Ge, Chao Ni 352 

Model 2: classical first-order model with time correction 

This model is suggested first by Agar (1983) and used by Dowling et al. (1985) and 

Gulsoy and Ersayin (1996). Modified flotation rate constant and selectivity index were 

introduced based on this model by Xu (1998), which was applied to the optimization 

of flotation process by Sripriya et al. (2003), Ucurum and Bayat (2007) and Vapur et 

al. (2010). The mathematical form of this model can be given as: 

 
 1 +

1 cK t t
R R e




  
 

  (21) 

where tc is the time correction and K1 is the rate constant of the classical first-order 

model with time correction.  

Model 3: first-order model with rectangular distribution of floatability 

This model is summarized in Table 1. The monodispersed feed with the rectangular 

distribution of floatabilities was introduced for a better description of the flotation 

process. In fact, it was proved that this model is a better form of the first-order one 

(Mazumdar, 1994; Yuan et al., 1996; Gulsoy and Ersayin, 1998; Ahmed, 2004; Bayat 

et al., 2004; Ni et al., 2016). 

Model 4: first-order model with rectangular distribution of floatabilities including 

time correction 

One of the problems of the flotation process is the definition of zero time. It was 

suggested that this might be partially solved by rejecting the concentrate collected 

after the first interval and defining the start of the second period as the zero time 

(Gulsoy and Ersayin, 1998). A mathematical form of this model, which was proposed 

by Agar (1983), is as follows: 
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1
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cK t t

c

R R e
K t t





      
  

  (22) 

where K2 is the rate constant of the first-order model with a rectangular distribution of 

floatabilities including time correction. 

Model 5: Kelsall model (first-order model with discretized distribution of floatability) 

The Kelsall model is a discretized distribution that describes the fractions and rate 

constant of fast and slow-floating materials and ultimate recoveries are considered as 

100%. The form of this model is shown in Eq. 10.  

Model 6: modified Kelsall model (first-order model with discretized distribution of 

floatability) 

The modified Kelsall model, which adds the ultimate recovery as a parameter, is given 

in Eq. 11. 
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Model 7: first-order model with triangular distribution of floatability  

This model is presented in Table 1. The triangular distribution is also known as a 

continuous uniform distribution. This model uses a triangular function to portray the 

distribution of rate constant instead of the rectangular distribution and it was proposed 

by Harris and Chakravarti (1970). 

Model 8: first-order model with sinusoidal distribution of floatability  

This model was proposed by Diao et al. (1992) and is shown in Table 1 (first-order 

model with sinusoidal distribution).  

Model 9: gamma model (first-order model with gamma distribution of floatability 

This model and the form of gamma distribution can be found in Table 1. Model 

parameter p influences the shape of the gamma distribution and parameter a is a scale 

parameter, representing the spread of the distribution function. It was found that this 

model showed a good fit to the experimental data (Apling and Ersayin, 1986; Saleh, 

2010; Albijanic et al., 2015). 

Model 10: bimodal-gamma model (first-order model with bimodal gamma 

distribution of floatability)  

This model assumes that the distribution of floating particles is subordinated to 

bimodal-gamma distribution function (Harris and Chakravarti, 1970). The expression 

can be seen in Table 1. 

Model 11: normal model (first-order model with normal distribution of floatability)  

In fact, the normal distribution function, namely the gaussian distribution, can be 

transferred into the gamma distribution with the exponential decay (Yianatos et al., 

2010). 

Model 12: Rosin-Rammler’s model  

This model is based on the classical first-order equation (Eq. 8). The mathematical 

expression of this model is as follows (Tarjan, 1986): 

 3(1 )
mK t

R R e


    (23) 

where m is the exponential parameter of flotation time and K3 is the rate constant of 

Rosin-Rammler’s model. This model was used to describe the flotation kinetics of 

Maghara coal (Ahmed, 1995). 

Model 13: first-order two-stage kinetic model  

Considering the flotation system composed of discrete pulp and froth volume, Meyer 

and Kelsall (1982) proposed a physical model incorporating rate terms describing the 

mass transfer of a component from the pulp to the froth and from the froth to the 

concentrate. This model, assuming that the rate of drainage from the froth is minimal, 

is derived as: 
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where K4 and K4
*
 are the rates of transfer from the pulp to the froth and from the froth 

to the concentrate, respectively. This three-parameter model describes a first-order 

two-stage process and is similar to the model derived by Harris and Rimmer (1966). 

As K1 is always much greater than K4
*
, a transfer from the froth to the concentrate is 

the rate limiting step (Saleh, 2010). Furthermore, Eq. 24, when K4 is large, can be 

written as Eq. 8 (Ek, 1992). 

Model 14: first-order reversible model  

The reversible model describes the transfer of a component from the pulp to the froth 

and the subsequent drainage of a portion of this component from the froth. The 

mathematical form of this model is written as (Ek, 1992): 
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where K5 and K5
*
 are the rates of transfer of a component from the pulp to the froth 

and drainage of a portion of this component from the froth, respectively. It is observed 

that Eq. 25 can be reduced to Eq. 8 when K5
*
 is negligible. 

Model 15: fully mixed reactor model  

Imaizumi and Inoue (1963) showed that the flotation results can be represented by an 

expression analogous to the equation describing the time concentration for a series of 

fully mixed reactors. This equation was reorganized into recovery terms and taking the 

number of reactors as one. This model equation can be obtained in Table 1 (first-order 

model with exponential distribution). This model, with the assumption of the 

exponential distribution of floatability, gives an added flexible over the classical first-

order model and enables it to the experimental data very well (Dowling et al, 1985). 

Model 16: gas/solid adsorption model 

Meyer and Kelsall (1982) described a general gas/solid adsorption kinetic function as 

follows: 

 
 

6

61
l

K
R R

K t



  (26) 

where l is the exponential parameter and K6 is the rate constant of gas/solid adsorption 

model. The form of this model is very different from any of the previously described 

models. It does not include an ultimate recovery parameter. Furthermore, it can be 

shown that l is generally greater than 1, which results in R increasing to values greater 

than 1 for long times and decreasing thereafter (Ek, 1992).  
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Model 17: improved gas/solid adsorption model 

Equation 26, when parameter l is equal to 1, has the same form as the Langmuir 

adsorption isotherm (Langmuir, 1918), which can be improved as the following 

equation: 

 7

71

K
R R

K t



  (27) 

where K7 is the rate constant of Improved gas/solid adsorption model. This model can 

be derived from the fully mixed reactors model by substituting 1/K7 for λ.  

Model 18: first-order model with discretized three fractions  

In the three-fraction kinetic model (Eq. 12 and 13), one fraction with a medium 

flotation rate constant was assumed based on the modified Kelsall model (Jowett, 

1974). 

Second-order flotation kinetics (n = 2) 

Model 19: second-order model  

If Eq. 6 is integrated between the limits (t=0, R0=0 and t= t, R= R), the second-first 

order equation is: 
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81

R K t
R

R K t




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

  (28) 

where K8 is the rate constant of the second-order model. 

This model is a two-parameter expression describing the flotation of a mono-

dispersed feed with particles having a constant floatability. The second-order model 

was applied to the discrimination of the optimal kinetic model for batch flotation 

(Arbiter, 1951). It can be noted that the fit calculated time-recovery profile and the 

optimal ultimate recovery values are found to be identical to that of fully mixed 

reactors and improved gas/solid adsorption model, but this form is not as good 

statistically as those determined by the first-order forms (Dowling et al., 1985; Yuan 

et al., 1996; Ek, 1992; Zhang et al., 2013; Ni et al., 2016). As seen from Table 2, the 

calculated values of R∞ of second-order model exceeded the appropriate range. The 

influence of the square of R∞ in Eq. 28 is too heavy when R∞ becomes large, which 

results in the exceeding phenomenon (R∞ >100%). The same phenomenon was also 

found by Luo et al. (2015). 
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Table 2. Calculated values of R∞ from first-order and second-order models (Bu et al., 2016) % 

Particle size (μm) 375 37 

Classical first-order 88.39 89.70 

First-order with rectangular 98.58 98.67 

Second-order 105.98 105.37 

Second-order with rectangular 116.07 114.69 

Model 20: second-order model with rectangular distribution of floatability 

Klimpel (1980) introduced rectangular distribution function into the second-order 

flotation kinetics. The mathematical form of this model is given as: 

  9

9

1
1 ln 1+R R K t

K t


   
   
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 (29) 

where K9 is the rate constant of the second-order with rectangular distribution model. 

The assumed two-order form introduces additional parameter dilution in the 

confidence intervals. As seen in Table 2, the fit to the observed data and the 

confidence intervals become increasingly worse as fractional recovery equal to 100% 

(Yuan et al., 1996). 

Non-integral-order flotation kinetics 

Although many researchers have argued either for first or second order rate equations, 

there is no necessary reason why the value of n in Eq. 6 must be integral (Arbiter and 

Harris, 1962). In fact, Volkova (1946) pointed out that the rate equation is in general 

between the first and second orders, and uses the first and second order for the 

flotation of simple minerals or in very dilute pulps, and low-grade minerals or more 

concentrated pulps, respectively. Volkova (1946) derived the differential equation 

which in the present terminology is given as: 
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where R∞ is the total mineral present of all species at infinite time and q represents the 

q’ th mineral. 

From an algebraic point of view, Eq. 30 is a first-order equation. When only one 

species is involved or the pulp is very dilute (R∞=Rq,∞), Eq. 30 can be integrated as: 

  1 qK t

qR R e


  .  (31) 
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It is observed that Eq. 30 is reduced to the classical first-order model (Eq. 8). 

Furthermore, if Rq <<R∞, the term R∞/(R∞ – Rq) is equal to 1 and Eq. 30 is then 

corrected to give:  

  
2q
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,

q

q q

q

dR K
R R

dt R
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

  .  (32) 

The solution of Eq. 32 is as follows: 
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The relationship between Eq. 33 and second-order model (Eq. 28) is simply given 

as: 

 8 ,q qK K R   .  (34) 

After that, Horst and Morris (1956) described a 1.5-order equation: 

 1.5dC
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and by integration: 
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where K1.5 is the rate constant of the 1.5-order equation.  

If the order of flotation kinetics is considered as a variable, the solution to Eq. 6 

yields (n 1): 
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 (37) 

The integral-order and non-integral-order (except the first-order) flotation models 

can be derived from Eq. 37 by substituting the appropriate value for the parameter n.  

Hernainz and Calero (1996, 2001) in testing the flotation process kinetics of the 

celestite and calcite concluded that the order of flotation kinetics is not an integer 

value. Bu et al (2016) observed that the non-integral-order equation gave a better fit to 

the test data of fine coal in average particle size 188 and 100 μm than that of first, 

second and third order models. The faster the flotation rate of particles is, the greater 

the values of n are. It suggests the order of flotation kinetics is non-integral for a 
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narrow range of particle size. In addition, the order of flotation kinetics can be lower 

than 1 in the initial moments of the process (Brozek and Mlynarczykowska, 2007; 

Vinnett et al., 2015). 

To sum up, the order of batch flotation kinetics is 1 n<2. There is no doubt that 

the most widely accepted approach among the researchers is still the first-order 

kinetics, while the non-integral-order model is also suitable to characterize the 

flotation process of narrow size coal, celestite, and calcite. By contrast, the second-

order and higher-order models are unfit to describe flotation time-recovery profiles. 

Ultimate recovery 

Some apparently floatable particles may still remain unfloated under the actual 

experimental conditions even the flotation time is prolonged. Experimentally, there 

also exists a maximum recovery (Rmax) determined by a batch flotation process in 

which the flotation rate test is executed until negligible mineral floats in the last 

interval. A rate test is given where a number of concentrates is collected over various 

time periods in order to generate recovery-time, grade-time and mass-time curves. The 

data is used to estimate flotation kinetics. Thus, the value of R∞ should range between 

Rmax and 100%.  

There are several methods which can be used for determination of the parameters 

in the kinetic model. These often involve some types of either graphical or 

computational procedures. The graphical representation of classical first-order model 

(Eq. 8) can be written as: 

  ln lnR R R Kt      (38) 

where the curve coordinates should also be a linear curve from which model 

parameters can be graphically determined.  

The tangent of the slope angle is the kinetic constant, KB, and the value of R∞ is 

obtained by its ordinate at the origin. In more complex models, the distribution of 

floatability is multiply and the number of parameters is more than two. Accordingly, 

the graphical method of determining the model parameters is not accurate and can be 

used only to give some ideas of the process kinetics. To avoid this problem, the least 

squares method is widely used by most investigators for the solution of kinetic models 

(Somasundaran and Lin, 1973; Bulatovic, 2007).  

The method of least squares is a standard approach in the regression analysis to 

approximate solution of over-determined systems, i.e., sets of equations in which there 

are more equations than unknowns. The best fit in the least-squares sense minimizes 

the sum of squared residuals (SSR), a residual being the difference between an 

observed value and the fitted value provided by a model (Nassif et al., 2015). The 

results of the least squares method are based on the SSR minimization without 

consideration in the rationality of calculated values, which leads to those improper 
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results, for instance, Rmax < R∞ and R∞ 100%. To avoid the problem, an empirical 

method for the solution of R∞ has been developed. The estimate of R∞ is based on the 

extrapolation from the tendency of the observed experimental data. The mathematical 

form of this model is (Ding, 1991; Luo et al., 2015):  

  = m m mR R t t      (39) 
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where t∞ is the infinite flotation time, m is the number of the collection intervals of 

concentrates, α is the recovery coefficient and ∆m represents the increment of the 

recovery in the m’
th
 flotation time interval.  

By the transform of formula, Eq. 39 can be written as:  
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As the process continues, the flotation rate decreases and the increase of recovery 

in the interval from tm to t∞ is smaller than ∆m. Hence, it can be noted that the value of 

α is smaller than 1. If Rm+1 and tm+1 are substituted for R∞ and t∞, respectively, α can be 

transferred as: 

 1m
m

m
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


 .  (42) 

For a flotation rate test with five intervals, we let α = α5. Then, the t∞ can be written 

as: 

  1m m mt t t t    .  (43) 

In fact, t∞ is considered as a definite time signifying the end of the flotation process 

in the developed method. Therefore, calculated t∞ is approached by doubling the last 

interval. Luo et al. (2015) successfully applied this method to the fit of easy-to-float 

and difficult-to-float coal flotation kinetics. The empirical calculated R∞ is shown in 

Table 3. 

Table 3. Empirical calculated values of R∞ 

Particle size (μm) α t∞(min) R∞ (%) 

37 0.39 8 95.13 

375 0.25 8 93.67 
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As seen in Table 3, the empirical results range between R∞ and 100%. This method 

solves the improper phenomenon of kinetic models on the basis of the extrapolation 

from the tendency of experimental data, which is helpful for the improvement of the 

availability of kinetic models.  

Conclusions 

Froth flotation is a highly versatile method for physical separation of particles based 

on differences in the ability of air bubbles to selectively adhere to the specific mineral 

surfaces in the pulp. The process involves the gas, liquid and solid phases and the 

interactions between physical and chemical factors. Flotation models can be generally 

divided into three categories: empirical, probability and kinetic models. Empirical 

models are related to a particulate plant and ore, and it is difficult to present a coherent 

body of common finding. Probability models are complex because of the 

consideration for the probability of different sub-processes within the flotation system. 

Kinetic models are reduced from probability models in certain constraints with three 

parameters such as f(K) (distribution of flotation rate constant), n (order of flotation 

process) and R∞ (ultimate recovery).  

Despite various distribution functions of K are developed to describe the variety of 

floatabiliies of flotation feed, none of them is widely admitted. More attention has 

been paid to the first-order flotation kinetics, while the non-integral-order process 

cannot be negligible. An empirical model was developed to avoid the inappropriate 

phenomenon in the solution of ultimate recovery, which improved the availability and 

validity of kinetic models. Finally, more effort should be made to the overfitting 

phenomenon resulting from the increase in the number of parameters in the 

discrimination of kinetic models.  
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